163 research outputs found

    UniPrime2: a web service providing easier Universal Primer design

    Get PDF
    The UniPrime2 web server is a publicly available online resource which automatically designs large sets of universal primers when given a gene reference ID or Fasta sequence input by a user. UniPrime2 works by automatically retrieving and aligning homologous sequences from GenBank, identifying regions of conservation within the alignment, and generating suitable primers that can be used to amplify variable genomic regions. In essence, UniPrime2 is a suite of publicly available software packages (Blastn, T-Coffee, GramAlign, Primer3), which reduces the laborious process of primer design, by integrating these programs into a single software pipeline. Hence, UniPrime2 differs from previous primer design web services in that all steps are automated, linked, saved and phylogenetically delimited, only requiring a single user-defined gene reference ID or input sequence. We provide an overview of the web service and wet-laboratory validation of the primers generated. The system is freely accessible at: http://uniprime.batlab.eu. UniPrime2 is licenced under a Creative Commons Attribution Noncommercial-Share Alike 3.0 Licence

    Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    Get PDF
    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly

    A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals

    Get PDF
    Hereditary deafness affects 0.1% of individuals globally and is considered as one of the most debilitating diseases of man. Despite recent advances, the molecular basis of normal auditory function is not fully understood and little is known about the contribution of single-nucleotide variations to the disease. Using cross-species comparisons of 11 'deafness' genes (Myo15, Ush1g, Strc, Tecta, Tectb, Otog, Col11a2, Gjb2, Cldn14, Kcnq4, Pou3f4) across 69 evolutionary and ecologically divergent mammals, we elucidated whether there was evidence for: (i) adaptive evolution acting on these genes across mammals with similar hearing capabilities; and, (ii) regions of long-term evolutionary conservation within which we predict disease-associated mutations should occur. We find evidence of adaptive evolution acting on the eutherian mammals in Myo15, Otog and Tecta. Examination of selection pressures in Tecta and Pou3f4 across a taxonomic sample that included a wide representation of auditory specialists, the bats, did not uncover any evidence for a role in echolocation. We generated ‘conservation indices' based on selection estimates at nucleotide sites and found that known disease mutations fall within sites of high evolutionary conservation. We suggest that methods such as this, derived from estimates of evolutionary conservation using phylogenetically divergent taxa, will help to differentiate between deleterious and benign mutations

    White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    Get PDF
    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding

    UniPrime: a workflow-based platform for improved universal primer design

    Get PDF
    UniPrime is an open-source software (http://uniprime.batlab.eu), which automatically designs large sets of universal primers by simply inputting a gene ID reference. UniPrime automatically retrieves and aligns homologous sequences from GenBank, identifies regions of conservation within the alignment and generates suitable primers that can amplify variable genomic regions. UniPrime differs from previous automatic primer design programs in that all steps of primer design are automated, saved and are phylogenetically limited. We have experimentally verified the efficiency and success of this program by amplifying and sequencing four diverse genes (AOF2, EFEMP1, LRP6 and OAZ1) across multiple Orders of mammals. UniPrime is an experimentally validated, fully automated program that generates successful cross-species primers that take into account the biological aspects of the PCR

    Genome-wide signatures of complex introgression and adaptive evolution in the big cats.

    Get PDF
    The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages

    Contradictory phylogenetic signals in the laurasiatheria anomaly zone

    Get PDF
    G.M.H. was funded by a UCD Ad Astra Fellowship. C.L. was funded by a UCD Ad Astra studentship. L.R. was funded by an SFI Centre for Research Training in Genomics Data Science grant (18/CRT/6214). L.M.D. was supported in part by NSF awards 1838273 and 2032063. E.C.T. and T.L. were funded by an SFI Frontiers for the Future Programme grant (19/FFP/6790).Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.Publisher PDFPeer reviewe

    Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality

    Get PDF
    BACKGROUND: The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by "white nose-syndrome" (WNS) continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. METHODOLOGY/PRINCIPAL FINDINGS: We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. CONCLUSIONS/SIGNIFICANCE: G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and therefore, might play an important role in the transmission process

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    This work was supported by a Paul G. Allen Frontiers Group grant to S.H., the University of Maryland, College of Computer, Mathematical and Natural Sciences to G.S.W., an Irish Research Council Consolidator Laureate Award to E.C.T., a UKRI Future Leaders Fellowship (MR/T021985/1) to S.C.V. and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to P.A.F. S.C.V. and P.D. were supported by a Max Planck Research Group awarded to S.C.V. by the Max Planck Gesellschaft, and S.C.V. and E.Z.L. were supported by a Human Frontiers Science Program Grant (RGP0058/2016) awarded to S.C.V. L.J.G. was supported by an NSERC PGS-D scholarship.Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.Publisher PDFPeer reviewe
    corecore